Suppose one begins with $50.0-\mathrm{mL}$ a 0.100 M solution of nitrous acid. The $\mathrm{Ka}=4.5 \times 10$ What is the pH after (a) 0.0 mL of 0.125 M NaOH is added? (b) After 10.0 mL ? (c) After 17.0 mL ? (d) After 20.0 mL ? (e) After 39.0 mL ? (f) After 40.0 mL ? (g) After 45.0 mL ?
(a) Adding 0.0 mL of 0.125 M NaOH : Calculate the pH using the ICE solution.

| | $\mathrm{HN} 02(\mathrm{aq})+\mathrm{H} 20(\mathrm{I}) \mathrm{e} \mathrm{NO} /(\mathrm{aq})$ | $1-130(\mathrm{aq}) \mathrm{Ka}=4.5 \times 10^{4}$ |
| :--- | :---: | :---: | :---: |
| Initial conc. | 0.100 M | 0.000 M 0.000 M |
| A conc. | -x | |

Eq. conc. $0 \cdot 100-x \quad x \quad x=$

$$
\mathrm{X}=0-130+1=6.5 \times 10-3 \mathrm{M} \mathrm{pH}=-\log [\mathrm{H} 30+]=-\log 6.5 \times 10-3 \mathrm{M}=\underline{2} 19
$$

(b) After initial calculation and before the equivalence point, the system has a buffer. Initial number of moles of $\mathrm{HN} 02 \cdot \bullet 0.100 \mathrm{M}(0.050 \mathrm{~L})=0.0050$ moles acid Adding 10.0 of $0.125 \mathrm{M} \mathrm{NaOH}: 0.125 \mathrm{M}(0.010 \mathrm{~L})=0.00125 \mathrm{~mol}$ base

$$
(\text { c.base }) \quad(0+0.00125) \quad \bullet 0.00125
$$

$$
\mathrm{pH}=\mathrm{pKa}+\log (\mathrm{acid})=3.35+\log \longrightarrow(0.0050-0.00125)=3.35+\log
$$

(c) After adding 17.0 rnL of $0.125 \mathrm{M} \mathrm{NaOH}: 0.125 \mathrm{M}(0.017 \mathrm{~L})=0.002125$ moles base

$$
\mathrm{pH}=3.35+16 \mathrm{~g} \underset{(0.0050-0.002125)}{(0.002125)} \quad=3.35+\log \underline{0.002875} \mathrm{0.002125}=3.35+0.13)=\underline{3.22}
$$

(d) After adding 20.0 rnL of $0.125 \mathrm{M} \mathrm{NaOH}: 0.125 \mathrm{M}(0.020 \mathrm{~L})=0.0025$ moles base

$$
\mathrm{pH}=3.35+\log _{(0.0050-0.0025)}=3.35+\log _{0.0025}=3.35-0.00=\underline{3.35}
$$

We are halfway to the equivalence point, so $\mathrm{pH}=\mathrm{pKa}$.
(e) After adding 39.0 of $0.125 \mathrm{M} \mathrm{NaOH}: 0.125 \mathrm{M}(0.0390 \mathrm{~L})=0.004875$ moles base

$$
\begin{gathered}
(0.004875) \underline{0.004875 \mathrm{pH}}=3.35+\log - \\
=3.35+1.59=\underline{\underline{4.94}} \\
(0.0050-0.004875)
\end{gathered}
$$

(f) After adding 40.0 of $0.125 \mathrm{M} \mathrm{NaOH}: 0.125 \mathrm{M}(0.0400 \mathrm{~L})=0.0050$ moles base Moles of acid $=$ moles of NaOH added. We have reached the equivalence point!
Do an ICE procedure using the Kb of the c . base of NH02. Namely NO-z- .N02 -

$$
(\mathrm{aq})+\mathrm{H} 20(\mathrm{I}) \text { e } \mathrm{HN} 02(\mathrm{aq})+\mathrm{OH}_{(\mathrm{aq})} \quad \mathrm{Kb}=\frac{-}{\nu_{n}}=2.2 \times 1
$$

Initial conc. $\quad 0.0050 \mathrm{~mol} / 0.09 \mathrm{OL} \quad 0.000 \mathrm{M} \quad 0.000$
conc. $-\mathrm{x} \quad \mathrm{M}$
Eq. conc. 0.0556-x $\mathrm{x} \quad \mathrm{x}$

$$
\begin{aligned}
& \mathrm{Kb}=\frac{[\mathrm{HNO} 2][\mathrm{OH}-]}{[\mathrm{NO} 2-]} \rightarrow 2.2 \times 10^{-11}=\frac{(x)(x)}{(0.0556-x)} \rightarrow \mathrm{X}=\sqrt{(2.2 \times 10-11)(0.0556-x)} \\
& \mathrm{X}_{1}=1.11 \times 10^{-6} \mathrm{M} \\
& \mathrm{X}_{2}=1.11 \times 10^{-6} \mathrm{M} \\
& \mathrm{X}=\left[\mathrm{OH}^{-}\right]=1.1 \times 10^{-6} \mathrm{M} \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=5.96 \quad \mathrm{pH}=14.00-5.96=8.04
\end{aligned}
$$

(g) With the addition of 45.0 mL , we have passed the equivalence point and the only species of any importance is the strong base, NaOH . Remember, at the eq. point, no NaOH exists. It was neutralized into water by the hydronium ion. Soooooo..... $0.125 \mathrm{M}(0.005 \mathrm{~L})=0.000625$ moles of OW / $0.095 \quad 0.00658 \mathrm{M}=[\mathrm{Off}]$ Excess NaOH after eq. pt. total volume

$$
\mathrm{POH}=2.18, \mathrm{pH}=11.82 \quad \underline{\text { YOU ARE FINISHED }!!!}
$$

