Report Sheet for Experiment #7: "Chemical Equilibrium and LeChâtelier's Principle"

Table of the Colors of Compounds used in this experiment

Compound	Color	Compound	Color	Compound
CoCl ₂ ·6 H ₂ O	red	$[Cu(H_2O)_6]^{2+}$	light blue	$[Cu(NH_3)_4(H_2O)_2]^{2+}$
$[Co(H_2O)_6^{2+}]$	red	Cu(OH) ₂	blue ppt	color of above compound
[CoCl ₄] ²⁺	blue	[CuBr ₄] ²⁻	brown	a very dark blue

Part 2: Reaction #1

[Co(H ₂ C) ₆] ²⁺ (aq) +	4 Cl ⁻ (aq)	→ [CoCl ₄] ²⁻ (aq)	+ 6 H ₂ O _(I)	
	Color	Direction		Explain	
7(a): After adding 12 M HCI:					
7(b): After adding AgNO₃					
7(c): After heating					
7(d): After cooling					
		Part 3. Rea	ction #3		

Part 3: Reaction #3

8):
$$[Cu(H2O)6]2+aq + 4 Br-(aq) \rightarrow [CuBr4]2-(aq) + 6 H2O(I)$$

Volume	Color	Volume	Color
1 st – mL		6 th – mL	
2 nd – mL		7 th – mL	
3 rd – mL		8 th – mL	
4 th – mL		9 th – mL	
5 th - mL		10 th – mL	

Explain what is happening: Consider the octahedral shape of the $[Cu(H_2O)_6]^{2^+}_{aq}$ and what is happening to the bromide ions when water is being added. Remember copper is the central metal ion of both the tetrahedral shape of the $[Cu(H_2O)_6]^{2^+}_{aq}$.

	Reaction #1:	$[Cu(H_2O)_6]^{2+}_{(aq)}$	+	$4 NH_{3(aq)}$	\rightarrow	$[Cu(NH_3)_4(H_2O)_2]^{2+}$	+	4 H ₂ O _(I)
9):	CuBr ₂ + 6 M NH	3 Color		Direction		Why		
10):	Add HNO ₃ Colo	or [Direc	tion		Why		