

# **COURSE OUTLINE**

## **DIVISION: Natural Sciences and Business**

## COURSE: MTH 2002 Calculus and Analytical Geometry II

Date: Spring 2022

Credit Hours: 4

Complete all that apply or mark "None" where appropriate: Prerequisite(s): MTH 2001 with a "C" or better

Enrollment by assessment or other measure?  $\Box$  Yes  $\boxtimes$  No If yes, please describe:

Corequisite(s): None

| Pre- | or | Coreq | uiste( | (ร | ): | None |
|------|----|-------|--------|----|----|------|
|------|----|-------|--------|----|----|------|

| Consent of Instructor: | X Yes | No No |
|------------------------|-------|-------|
|------------------------|-------|-------|

Offered: 🛛 Fall 🛛 Spring 🖾 Summer

#### CATALOG DESCRIPTION and IAI NUMBER (if applicable):

Topics include: differential equations; the calculus of inverse trigonometric functions; applications of the integral; techniques of integration, including numerical methods, substitution, integration by parts, trigonometric substitution, and partial fractions; indeterminate forms and L'Hôpital's rule; improper integrals; sequences and series, convergence tests, Taylor series; conics; parametric equations; polar coordinates and equations. IAI Equivalent: M1900-2, MTH 902

# ACCREDITATION STATEMENTS AND COURSE NOTES:

None

### COURSE TOPICS AND CONTENT REQUIREMENTS:

- I. Differential Equations, Inverse Trigonometric Functions
  - B. Differential Equations; Growth and Decay
  - C. Differential Equations; Separation of Variables
  - D. Inverse Trigonometric Functions and Differentiation
  - E. Inverse Trigonometric Functions and Integration
- II. Applications of Integration
  - A. Moments, Centers of Mass, and Centroids
  - B. Fluid Pressure and Fluid Force
- III. Integration Techniques, L'Hopital's Rule, and Improper Integrals
  - A. Basic Integration Rules
  - B. Integration by Parts
  - C. Trigonometric Integrals
  - D. Trigonometric Substitution
  - E. Partial Fractions
  - F. Integration by Tables and Other Integration Techniques
  - G. Indeterminate Forms and L'Hopital's Rule
  - H. Improper Integrals
  - I. Numerical Integration
- IV. Infinite Series
  - A. Sequences
  - B. Series and Convergence
  - C. The Integral Test and p-Series
  - D. Comparisons of Series
  - E. Alternating Series
  - F. The Ratio and Root Tests
  - G. Taylor Polynomials and Approximations
  - H. Power Series
  - I. Representation of Functions by Power Series
  - J. Taylor and Maclaurin Series
- V. Conics, Parametric Equations, and Polar Coordinates
  - A. Conics and Calculus
  - B. Plane Curves and Parametric Equations
  - C. Parametric Equations and Calculus
  - D. Polar Coordinates and Polar Graphs
  - E. Area and Arc Length in Polar Coordinates
  - F. Polar Equations of Conics

#### **INSTRUCTIONAL METHODS:**

- 1. Lecture
- 2. Class discussion
- 3. Class participation and activities
- 4. Audio-visual aids calculator, document camera, computers, etc.

#### **EVALUATION OF STUDENT ACHIEVEMENT:**

- 1. Homework, quizzes and exams
- 2. Activities (e.g. projects, case studies, etc.)

#### **INSTRUCTIONAL MATERIALS:**

#### Textbooks

Thomas' Calculus (Hass, et.al., Pearson)

#### Resources

None

#### LEARNING OUTCOMES AND GOALS:

#### **Institutional Learning Outcomes**

- 1) Communication to communicate effectively;
- 2) Inquiry to apply critical, logical, creative, aesthetic, or quantitative analytical reasoning to formulate a judgement or conclusion;
- 3) Social Consciousness to understand what it means to be a socially conscious person, locally and globally;
- 4) Responsibility to recognize how personal choices affect self and society.

#### **Course Outcomes and Competencies**

- 1. Students will be able to demonstrate knowledge of differential equations and the calculus of inverse trigonometric functions.
- 1.1. Students will be able to solve differential equations for growth and decay applications.
- 1.2. Students will be able to solve first-order differential equations by the method of separation of variables.
- 1.3. Students will be able to differentiate and integrate inverse trigonometric functions.
- 2. Students will be able to demonstrate knowledge of applications of definite integrals.
- 2.1. Students will be able to find the moments, center of mass, and centroids of planar laminas and centroids.
- 2.2. Students will be able to calculate fluid pressure and fluid force.

#### 3. Students will be able to demonstrate proficiency in integration techniques.

- 3.1. Students will be able to use the basic integration rules to solve integration problems.
- 3.2. Students will be able to use the method of integration by parts to solve certain integration problems.
- 3.3. Students will be able to use certain techniques for solving trigonometric integrals involving combinations of powers of the sine, cosine, tangent and secant functions.

- 3.4. Students will be able to solve certain integration problems by using an appropriate trigonometric substitution.
- 3.5. Students will be able to use the method of partial fractions to solve certain integration problems.
- 3.6. Students will be able to use the table of integrals to solve certain integration problems.
- 3.7. Students will be able to use L'Hopital's Rule to evaluate limits involving indeterminate forms.
- 3.8. Students will be able to evaluate improper integrals.
- 3.9. Students will be able to approximate definite integrals with numerical integration techniques such as the Trapezoidal Rule and Simpson's Rule.

# 4. Students will be able to demonstrate knowledge of infinite sequences and series.

- 4.1. Students will be able to find the limit of a sequence.
- 4.2. Students will be able to determine if a sequence converges or diverges.
- 4.3. Students will be able to determine the pattern of a sequence.
- 4.4. Students will be able to recognize and work with monotonic and bounded sequences.
- 4.5. Students will be able to determine the sequence of partial sums for an infinite series.
- 4.6. Students will be able to determine if a geometric series converges or diverges; and, if it converges, then to what number.
- 4.7. Students will be able to determine if an infinite series diverges using the divergence test
- 4.8. Students will be able to use the Integral Test to determine the convergence or divergence of a series.
- 4.9. Students will be able to use the p-series test to determine the convergence or divergence of a series.
- 4.10. Students will be able to use the direct Comparison Test to determine the convergence or divergence of a series.
- 4.11. Students will be able to use the Limit Comparison Test to determine the convergence or divergence of a series.
- 4.12. Students will be able to use the Ratio Test to determine the convergence or divergence of a series.
- 4.13. Students will be able to use the Root Test to determine the convergence or divergence of a series.
- 4.14. Students will be able to match the Taylor polynomial approximation of a function with its correct graph.
- 4.15. Students will be able to find the Maclaurin polynomial of degree n for a given function.
- 4.16. Students will be able to find the nth Taylor polynomial of a function centered at c.
- 4.17. Students will be able to approximate a function at a given value using either a Taylor polynomial or Maclaurin polynomial.
- 4.18. Students will be able to use Taylor's Theorem to determine the accuracy of an approximation.

- 4.19. Students will be able to determine the degree of a Taylor or Maclaurin polynomial that would be needed to achieve a desired accuracy.
- 4.20. Students will be able to find the radius of convergence and the interval of convergence for a power series.
- 4.21. Students will be able to find geometric series representations for certain functions.
- 4.22. Students will be able to find a power series representation of a function centered at c and also determine the interval of convergence.
- 4.23. Students will be able to use the definition to find the Taylor series (centered at c) for a given function.
- 4.24. Students will be able to use the binomial series to find the Maclaurin series for a given function.
- 4.25. Students will be able to find the Maclaurin series representation of a function by using existing Maclaurin series of related functions.
- 4.26. Students will be able to integrate or differentiate a power series to obtain another power series.
- 4.27. Students will be able to add, subtract or multiply two power series together to obtain another power series.
- 5. Students will be able to demonstrate knowledge of conics, parametric equations, and polar coordinates.
- 5.1. Students will be able to match the equation of a conic with its graph.
- 5.2. Students will be able to find the vertex, focus, and directrix of a parabola and then sketch its graph.
- 5.3. Students will be able to find the equation of a parabola if the vertex and focus are known.
- 5.4. Students will be able to find the equation of a parabola if the focus and directrix are known.
- 5.5. Students will be able to find the equation of a parabola if the vertex and dirctrix are known.
- 5.6. Students will be able to solve application problems that relate to the equation of a parabola.
- 5.7. Students will be able to find the center, foci, vertices, and eccentricity of an ellipse, and then sketch its graph.
- 5.8. Students will be able to find the equation of an ellipse if certain combinations of the center, foci, vertices, major axis, minor axis or a point on graph are given.
- 5.9. Students will be able to solve application problems that relate to the equation of an ellipse.
- 5.10. Students will be able to find the center, foci, and vertices of a hyperbola and then sketch its graph.
- 5.11. Students will be able to find the equation of a hyperbola if certain combinations of the vertices, asymptotes, foci or center are given.
- 5.12. Students will be able to solve application problems that relate to the equation of a hyperbola.
- 5.13. Students will be able to find all points of horizontal and vertical tangency for parabolas, ellipses, and hyperbolas.
- 5.14. Students will be able to classify the graph of an equation as a circle, parabola, ellipse, or a hyperbola.

- 5.15. Students will be able to sketch the curve represented by a set of parametric equations both by hand and with technology.
- 5.16. Students will be able to eliminate the parameter from a set of parametric equations to obtain the standard form in rectangular coordinates.
- 5.17. Students will be able to find two different sets of parametric equations for a given rectangular equation.
- 5.18. Students will be able to match a set of parametric equations with its correct graph.
- 5.19. Students will be able to compute first and second derivatives of parametric equations.
- 5.20. Students will be able to find an equation of the tangent line to a point on the curve of parametric equations.
- 5.21. Students will be able to find all points of horizontal and vertical tangency for a parametric curve.
- 5.22. Students will be able to compute the arc length for a parametric curve.
- 5.23. Students will be able to compute the area of a surface of revolution in parametric form.
- 5.24. Students will be able to convert the rectangular coordinates of a point to polar coordinates and vice-versa.
- 5.25. Students will be able to convert a rectangular equation to a polar equation and vice-versa.
- 5.26. Students will be able to use a graphing utility to graph a polar equation.
- 5.27. Students will be able to find the points of vertical and horizontal tangency to a polar curve.
- 5.28. Students will be able to find the area of a region bounded by the graph of a polar equation.
- 5.29. Students will be able to find the points of intersection between the graphs of two polar equations.
- 5.30. Students will be able to use a graphing utility to approximate the points of intersection between the graphs of two polar equations.
- 5.31. Students will be able to find the area of a common region of two polar curves.
- 5.32. Students will be able to compute the area of a surface of revolution in polar form.
- 5.33. Students will be able to sketch and identify the graph of conic in polar form.
- 5.34. Students will be able to find a polar equation of a conic given its eccentricity and directrix or given its vertices.
- 5.35. Students will be able to use a graphing utility to approximate the area of the region bounded by the graph of a polar equation.