# ILLINOIS VALLEY COMMUNITY COLLEGE 

## COURSE OUTLINE

## DIVISION: Natural Science and Business <br> COURSE: MTH 1007 Calculus for Business and Social Sciences

Date: Spring 2022
Credit Hours: 4
Complete all that apply or mark "None" where appropriate:
Prerequisite(s): MTH 1003 with a grade of " $C$ " or better
Enrollment by assessment or other measure? $\boxtimes \mathrm{Yes} \square$ No If yes, please describe: by appropriate assessment.

Corequisite(s): None
Pre- or CoRequisite(s): None
Consent of Instructor: $\boxtimes$ Yes $\square$ No

| Delivery Method: | $\boxtimes$ Lecture | 4 Contact Hours ( 1 contact $=1$ credit hour) |
| :--- | :--- | :--- |
|  | $\square$ Seminar | 0 Contact Hours ( 1 contact $=1$ credit hour) |
|  | $\square$ Lab | 0 Contact Hours ( $2-3$ contact $=1$ credit hour) |
|  | $\square$ Clinical | 0 Contact Hours (3 contact $=1$ credit hour) |
|  | $\boxtimes$ Online |  |
|  | $\boxtimes$ Blended |  |
|  | $\boxtimes$ Virtual Class Meeting (VCM) |  |

Offered: $\boxtimes$ Fall $\boxtimes$ Spring $\boxtimes$ Summer
CATALOG DESCRIPTION and IAI NUMBER (if applicable):
This course is for students who need a basic understanding of differential and integral calculus, but do not need the more rigorous traditional calculus sequence. Applications in the fields of business and social sciences are stressed. IAI equivalent: M1900B

## ACCREDITATION STATEMENTS AND COURSE NOTES:

None

## COURSE TOPICS AND CONTENT REQUIREMENTS:

I. Preliminaries
A. Precalculus Review
B. The Cartesian Coordinate System
C. Straight Lines
II. Functions, Limits, and the Derivative
A. Functions and Their Graphs
B. The Algebra of Functions
C. Functions and Mathematical Models
D. Limits
E. One-Sided Limits and Continuity
F. The Derivative
III. Differentiation
A. Basic Rules of Differentiation
B. The Product and Quotient Rules
C. The Chain Rule
D. Marginal Functions in Economics
F. Higher-Order Derivatives
G. Implicit Differentiation and Related Rates
H. Differentials
IV. Applications of the Derivative
A. Applications of the First Derivative
B. Applications of the Second Derivative
C. Curve Sketching
D. Optimization
V. Exponential and Logarithmic Functions
A. Exponential Functions
B. Logarithmic Functions
C. Compound Interest
D. Differentiation of Exponential Functions
E. Differentiation of Logarithmic Functions
F. Exponential Functions as Mathematical Models
VI. Integration
A. Antiderivatives and the Rules of Integration
B. Integration by Substitution
C. Area and the Definite Integral
D. The Fundamental Theorem of Calculus
E. Evaluating Definite Integrals
F. Area Between Two Curves
G. Applications of the Definite Integral to Business and Economics
VII. Additional Topics in Integration
A. Integration by Parts
B. Integration Using Tables of Integrals
C. Numerical Integration
D. Improper Integrals
VIII. Calculus of Several Variables
A. Functions of Several Variables
B. Partial Derivatives
C. Maxima and Minima of Functions of Several Variables

## INSTRUCTIONAL METHODS:

1. Lecture
2. Class Participation and Discussions
3. Instructional quizzes, exams, and homework
4. Audio-Visual Aids - calculuator, overheads, computer, etc.

## EVALUATION OF STUDENT ACHIEVEMENT:

Unit tests
Comprehensive final exam
Projects
MyMathLab assignments
Quizzes

## INSTRUCTIONAL MATERIALS:

## Textbooks

Calculus for Business, Economics, Life Science, and Social Sciences, Barnett, Pearson

## Resources

Test Generation Software
Printed Test Bank
Online Videos

## LEARNING OUTCOMES AND GOALS:

## Institutional Learning Outcomes

$\square$ 1) Communication - to communicate effectively;
இ 2) Inquiry - to apply critical, logical, creative, aesthetic, or quantitative analytical reasoning to formulate a judgement or conclusion;
3) Social Consciousness - to understand what it means to be a socially conscious person, locally and globally;
4) Responsibility - to recognize how personal choices affect self and society.

## Course Outcomes and Competencies

1. Students will demonstrate knowledge of the cartesian coordinate system.
1.1. Students will be able to solve inequalities
1.2. Students will be able to evaluate expressions
1.3. Students will be able to perform indicated operations
1.4. Students will be able to factor the expressions
1.5. Students will be able to sketch a set of coordinate axes and plot points
1.6. Students will be able to find the distance between points
1.7. Students will be able to find the slope of the given line
1.8. Students will be able to write the equation in slope-intercept form
1.9. Students will be able to find the equation of the line given points
2. Students will demonstrate knowledge of functions, limits, and the derivative
2.1. Students will be able to determine whether the point lies on the graph
2.2. Students will be able to find the domain of the function
2.3. Students will be able to sketch the graph of a piece-wise function
2.4. Students will be able to determine is the graph is a function
2.5. Students will be able to find the rules for $f-g, f+g, f g$, and $f / g$
2.6. Students will be able to find the rules for composite functions
2.7. Students will be able to determine the kind of function given
2.8. Students will be able to find the equilibrium point
2.9. Students will be able to find the indicated limit
2.10. Students will be able to find the indicated one-sided limit
2.11. Students will be able to determine functional values that are discontinuous
2.12. Students will be able to show that a function is continuous
2.13. Students will be able to prove that $f$ must have a zero between $a$ and $b$
2.14. Students will be able to use the four-step process to find slope of tangent
2.15. Students will be able to find average rate of change
2.16. Students will be able to find the instantaneous rate of change
3. Students will demonstrate knowledge of differentiation
3.1. Students will be able to find the derivative using the rules of differentiation
3.2. Students will be able to find the given limit by evaluating the derivative
3.3. Students will be able to find the marginal cost, revenue, and profit
3.4. Students will be able to find the average marginal cost, revenue, and profit
3.5. Students will be able to find the elasticity of demand
3.6. Students will be able to find the second and third derivatives
3.7. Students will be able to find derivatives using implicit differentiation
3.8. Students will be able to find the differential of the given function
4. Students will demonstrate knowledge of applications of the derivative
4.1. Students will be able to find increasing, decreasing, or constant functions
4.2. Students will be able to determine the relative maxima and minima
4.3. Students will be able to determine the concavity and inflection points
4.4. Students will be able to find the vertical and horizontal asymptotes
4.5. Students will be able to sketch the graphs using curve-sketching
4.6. Students will be able to determine the absolute maxima and minima
5. Students will demonstrate knowledge of exponential and logarithmic functions
5.1. Students will be able to evaluate and simplify expressions with $\log$ and e
5.2. Students will be able to use the laws of logs to solve equations
5.3. Students will be able to find accumulated amounts and present values
5.4. Students will be able to find the effective rates and annuitites
5.5. Students will be able to differentiate exponential functions
5.6. Students will be able to differentiate logarithmic functions
5.7. Students will be able to solve exponential growth problems
5.8. Students will be able to solve exponential decay problems
5.9. Students will be able to solve population problems
6. Students will demonstrate knowledge of integration
6.1. Students will be able to verify that $F$ is a antiderivative of $f$
6.2. Students will be able to find the indefinite integral
6.3. Students will be able to solve an initial value problem
6.4. Students will be able to find a function given slope at any point
6.5. Students will be able to solve indefinite integrals using substitution
6.6. Students will be able to find an approximation of the area under the curve
6.7. Students will be able to compute the Riemann sum over the interval
6.8. Students will be able to understand the fundamental theorem of calculus
6.9. Students will be able to evaluate the definite integral
6.10. Students will be able to find the area between two curves
6.11. Students will be able to find the consumers surplus
6.12. Students will be able to find the producers surplus
6.13. Students will be able to find the accumulated future value
6.14. Students will be able to find the present value of an income stream
6.15. Students will be able to find the amount of an annuity
6.16. Students will be able to find the present value of an annuity
7. Students will demonstrate knowledge of additional topics in integration
7.1. Students will be able to evaluate an indefinite integral by integrate by parts
7.2. Students will be able to use the table of integrals to evaluate integrals
7.3. tudents will be able to approximate integrals with numerical integration
7.4. Students will be able to find the present value of a perpetuity
7.5. Students will be able to evaluate improper integrals when convergent
8. Students will demonstrate knowledge of calculus of several variables
8.1. Students will be able to find the domain of functions of several variables
8.2. Students will be able to sketch level curves
8.3. Students will be able to find the first partial derivatives of functions
8.4. Students will be able to find the second order partial derivatives
8.5. Students will be able to find critical points of several variable functions
