<i>ILLINOIS VALLEY COMMUNITY COLLEGE</i>		
COURSE OUTLINE DIVISION: Workforce Development		
Date: Spring 2022		
Credit Hours:	3	
Prerequisite(s):	None	
Delivery Method:	⊠ Lecture	2 Contact Hours (1 contact = 1 credit hour)
	Seminar 🗌	0 Contact Hours (1 contact = 1 credit hour)

- 2 Contact Hours (2-3 contact = 1 credit hour)
- 0 Contact Hours (3 contact = 1 credit hour)

Offered: \square Fall \square Spring \square Summer

Clinical

Blended

Online

CATALOG DESCRIPTION and IAI NUMBER (if applicable):

The Master Blueprint Reading course is designed to progress logically from an introduction to blueprint reading through a study of the fundamental skills and concepts involved in reading, sketching, and interpreting drawings. Basic drafting principles related to information conveyed in oblique, isometric, and multi-view drawings will be reviewed with regards to industrial blueprints from multiple disciplines. Discussion will also include basic metallurgy and nondestructive examination of piping systems.

ACCREDITATION STATEMENTS AND COURSE NOTES:

N/A

COURSE TOPICS AND CONTENT REQUIREMENTS:

- I. Fundamentals of Drafting Symbols
- II. Fundamentals of Orthographic Projection
- III. Sectional and Auxiliary Views
- IV. Sketching
- V. Dimensioning
- VI. Use of Notes and Symbols
- VII. Assembly Drawings
- VIII. Overview of Prints Used in Various Manufacturing Environments

INSTRUCTIONAL METHODS:

- 1. Lecture on board
- 2. Demonstration
- 3. One-on-one attention individualized

EVALUATION OF STUDENT ACHIEVEMENT:

INSTRUCTIONAL MATERIALS:

Textbooks

Print Reading for Industry, 11th edition Authors: Walter C. Brown, Ryan K. Brown ISBN 978-1-64564-672-3 Print Reading for Industry, 11th edition. Large Prints Packet

Resources

N/A

LEARNING OUTCOMES AND GOALS:

Institutional Learning Outcomes

- Communication to communicate effectively;
- Inquiry to apply critical, logical, creative, aesthetic, or quantitative analytical reasoning to formulate a judgement or conclusion;
- Social Consciousness to understand what it means to be a socially conscious person, locally and globally;
- Responsibility to recognize how personal choices affect self and society.

Course Outcomes and Competencies

Upon completion of the course, the student will be able to:

- 1. To develop skills in visualizing and interpreting prints used in machining, welding, sheet metal, piping, and electrical applications.
- 2. To develop skills in sketching prints used in machining, welding, sheet metal, piping, and electrical applications.
- 3. Have an understanding of multi-view and isometric projection and techniques of sketching the student will:
 - a. sketch the front, top, and side views when given an isometric view

- b. sketch the isometric and complete the views of various objects
- c. sketch in the missing lines and views of various multi-view problems
- 4. Given problems involving basic mathematics, the student will perform the mathematical operations involving whole numbers, fractions, and decimals.
- 5. Students will have an understanding of the various concepts used in the making of an engineering drawing as:
 - a. conventional line practices
 - b. orthographic projection
 - c. dimensioning
 - d. auxiliary views
 - e. detail and assembly drawings
 - f. tolerancing
 - g. sectional views
 - h. pictorial drawings
 - i. geometric tolerances
- 6. Students will be able to read and interpret title blocks, material lists, notes and drawing changes.
- 7. Students will be able to read and interpret machining specifications as:
 - a. thread, representation, and specifications
 - b. specification and callouts for machine processes
 - c. tolerances of position and form
 - d. gears, splines, and serrations
- 8. Given CNC and weldment drawing, the student will interpret relative to the construction of the part.
- 9. Given advanced machine drawings or industrial prints, the student will demonstrate his understanding of the part represented by answering questions relative to the construction of the part.