ILLINOIS VALLEY COMMUNITY COLLEGE

COURSE OUTLINE

DIVISION: Career and Technical Programs

COURSE: ELT 1203; Industrial Instrumentation

Date: Fall 20	11	
Credit Hours:	2.5	
Prerequisite(s):	ELE-1201, Basic	Industrial Electricity II
Delivery Method:	 Lecture Seminar Lab Clinical Online Blended 	 2 Contact Hours (1 contact = 1 credit hour) 0 Contact Hours (1 contact = 1 credit hour) 1 Contact Hours (2 contact = 1 credit hour) 0 Contact Hours (3 contact = 1 credit hour)
Offered: 🗌 Fall	🛛 Spring 🗌	Summer

IAI Equivalent - Only for Transfer Courses-go to http://www.itransfer.org:

CATALOG DESCRIPTION:

This course is designed to cover the basic concepts of: temperature; pressure; flow and level and how each is measured; the operation and applications of transducers, meters, and control circuits; along with practical installation and troubleshooting techniques for instrumentation systems. Lecture, 2 hours; lab, 1 hour.

GENERAL EDUCATION GOALS ADDRESSED

[See the last page of this form for more information.]

Upon completion of the course, the student will be able:

[Choose those goals that apply to this course.]

- To apply analytical and problem solving skills to personal, social and professional issues and situations.
- To communicate orally and in writing, socially and interpersonally.
-] To develop an awareness of the contributions made to civilization by the diverse cultures of the world.
- To understand and use contemporary technology effectively and to understand its impact on the individual and society.
- To work and study effectively both individually and in collaboration with others.
- To understand what it means to act ethically and responsibly as an individual in one's career and as a member of society.
- To develop and maintain a healthy lifestyle physically, mentally, and spiritually.
- To appreciate the ongoing values of learning, self-improvement, and career planning.

EXPECTED LEARNING OUTCOMES AND RELATED COMPETENCIES:

[Outcomes related to course specific goals.]

Upon completion of the course, the student will be able to:

- The student will learn the concepts of weight, density, mass, acceleration, relative and absolute temperature, relative and absolute pressure, relative and absolute humidity, ph specific gravity and viscosity.
- The student will learn how to use a tab le of coefficients of expansion to determine the change in volume of a material due to a change in temperature.
- The student must learn to convert between milli, micro, pico, meg, gign, Kilo/psi, psf/C°F°, etc.
- The student will learn the concepts of stress, strain, and yield point leverage.
- The student must know the relationship between various temperature scales.
- The student will learn the use principles and advantages and disadvantages of an orifice, venture, and a flow tube.
- The student will learn the use, advantages and disadvantages of thermistors, varistors, thermocouples, and RTDs.
- The student will learn the operation and use of piezo, photo, chemical, thermal, electromagnetic, electrostatic and inductive transducers.
- The student will learn the use of analog and digital multimeters and the effects of input impedance and ratings of ohm per volt.
- The student will learn how and why static and dynamic errors are created.
- The student will be introduced to the basics of fiber optics.

COURSE TOPICS AND CONTENT REQUIREMENTS:

- 1. Introduction to industrial instrumentation
- 2. Atom structure
- 3. Electricity

- 4. Electricity op amps
- 5. Behavior of materials
- 6. Basic principles
- 7. Pressure
- 8. Control
- 9. Temperature
- 10. Level
- 11. Flow
- 12. Humidity
- 13. Analysis
- 14. Fiber optic concepts
- 15. Fiber optic applications

INSTRUCTIONAL METHODS:

- 1. Laboratory work
- 2. Demonstrations
- 3. Lecture—discussion
- 4. Reading assignments
- 5. Homework
- 6. Quizzes

INSTRUCTIONAL MATERIALS:

Instrumentations and Process Control, Bartelt, Delmar, 1-4180-4171-8

STUDENT REQUIREMENTS AND METHODS OF EVALUATION:

- 1. The students must meet the objectives of the course stated previously.
- 2. Laboratory reports must be completed as directed and receive an evaluation for accuracy of 100% using criteria set forth in the laboratory directions.
- 3. Grade for course will be based upon the following:
 - a. Laboratory Work
 - b. Written tests and quizzes
 - c. Attendance and attitude
 - d. Homework assignments
 - e. Final 50%
 - f. Midterm 25%
 - g. Labs, homework, quiz, class participation 25%

OTHER REFERENCES

Course Competency/Assessment Methods Matrix

ELT 1203; Industrial Instrumentation		Assessment Opti											ent Options																	
For each competency/outcome place an "X" below the method of assessment to be used.	Assessment of Student Learning	Article Review	Case Studies	Group Projects	Lab Work	Oral Presentations	Pre-Post Tests	Quizzes	Written Exams	Artifact Self Reflection of Growth		Comprehensive Written Exit Exam	Multi-Media Frojects Observation	Writing Samples	Portfolio Evaluation	Real World Projects	Reflective Journals	Applied Application (skills) Test	Oral Exit Interviews	Accreditation Reviews/Reports	Advisory Council Feedback	Employer Surveys	Graduate Surveys	Internship/Practicum /Site Supervisor Evaluation	Licensing Exam	In Class Feedback	Simulation	Interview	Written Report	Assignment
Assessment Measures – Are direct or indirect as indicated. List competencies/outcomes below.	Direct/ Indirect	Δ	D	D	Δ				Δ		ם מ						۵	Δ					D	D						
• The student will learn the concepts of weight, density, mass, acceleration, relative and absolute temperature, relative and absolute pressure, relative and absolute humidity, ph specific gravity and viscosity.					×																									
• The student will learn how to use a tab le of coefficients of expansion to determine the change in volume of a material due to a change in temperature.								×	×																					
 The student must learn to convert between milli, micro, pico, meg, gign, Kilo/psi, psf/C°F°, etc. 								×	×																					
The student must know the relationship between various temperature scales.								×	\times																					

ELT 1203; Industrial Instrumentation	_										A	ss	es	sm	ner	nt (Эрі	tio	ns													
For each competency/outcome place an "X" below the method of assessment to be used.	Assessment of Student Learning	Article Review	Case Studies	Group Projects	Lab Work	Oral Presentations	Pre-Post Tests	Quizzes	Written Exams	Artifact Self Reflection of Growth	Capstone Projects	Comprehensive Written Exit Exam	Course Embedded Questions	Multi-Media Projects	Observation	Writing Samples	Portfolio Evaluation	Real World Projects	Reflective Journals	Applied Application (skills) Test	Oral Exit Interviews	Accreditation Reviews/Reports	Advisory Council Feedback	Employer Surveys	Graduate Surveys	Internship/Practicum /Site	Licensing Exam	In Class Feedback	Simulation	Interview	Written Report	Assignment
Assessment Measures – Are direct or indirect as indicated. List competencies/outcomes below.	Direct/ Indirect	۵	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D		_	_		D	Δ						
• The student will learn the use principles and advantages and disadvantages of an orifice, venture, and a flow tube.					×																							×				
• The student will learn the use, advantages and disadvantages of thermistors, varistors, thermocouples, and RTDs.					×																							×				
• The student will learn the operation and use of piezo, photo, chemical, thermal, electromagnetic, electrostatic and inductive transducers.				×	X																											
• The student will learn the use of analog and digital multimeters and the effects of input impedance and ratings of ohm per volt.					×																											
• The student will learn how and why static and dynamic errors are created.					×			\times	\times																							
• The student will be introduced to the basics of fiber optics.																																×