ILLINOIS VALLEY COMMUNITY COLLEGE

COURSE OUTLINE

DIVISION: Career and Technical Programs

COURSE: EGR 1000; Engineering Graphics I

Date:	2012		
Credit Hou	ırs:	4	
Prerequisi	te(s):	NONE	
Delivery M	lethod:	⊠ Lecture	2 Contact Hours (1 contact = 1 credit hour)
		□ Seminar	0 Contact Hours (1 contact = 1 credit hour)
		⊠ Lab	4 Contact Hours (2 contact = 1 credit hour)
		☐ Clinical	0 Contact Hours (3 contact = 1 credit hour)
		☐ Online	
		Blended	
Offered:	⊠ Fall	⊠ Spring	☐ Summer

IAI Equivalent – Only for Transfer Courses-go to http://www.itransfer.org.

CATALOG DESCRIPTION:

This course is designed to introduce to the beginning engineering student to the principles of the graphic language. The student will learn the principals involved in sketching, mechanical drawing and CAD and all the standards that govern those principles. Topics include including sketching, computer aided drafting, dimensioning, tolerancing, multi-view orthographic representations, auxiliary views, section views, and working drawings. Upon completion of this course students will have a better understanding of the role an engineer pertaining to design principles and working drawings.

GENERAL EDUCATION GOALS ADDRESSED

[See the last page of this form for more information.]

Upon completion of the course, the student will be able:

[Choose those goals that apply to this course.]

☐ To apply analytical and problem solving skills to personal, social and
professional issues and situations.
To communicate orally and in writing, socially and interpersonally.
To develop an awareness of the contributions made to civilization by the diverse cultures of the world.
☐ To understand and use contemporary technology effectively and to
understand its impact on the individual and society.
☐ To work and study effectively both individually and in collaboration with
others.
☐ To understand what it means to act ethically and responsibly as an
individual in one's career and as a member of society.
☐ To develop and maintain a healthy lifestyle physically, mentally, and
spiritually.
☐ To appreciate the ongoing values of learning, self-improvement, and
career planning.
EXPECTED LEARNING OUTCOMES AND RELATED COMPETENCIES:
[Outcomes related to course specific goals.] Upon completion of the course, the student will be able to:
Use freehand sketching to sketch isometric, oblique and perspective pictorials.
Describe the basic terms, concept and techniques of computer aided drafting.
3. Set up Cad drawings, use drawing aids, save drawings, and get help when needed.
4. Using geometric construction techniques sketch shapes by hand and on Cad.
5. Using orthographic principles sketch multi view drawings of detailed parts.
6. Produce 2d multi view drawings on Cad.
7. Produce section views and auxiliary views by freehand sketching and in 2d cad.
8. Find true sizes, distances, and angles between points, lines, and planes in three
dimensions.
Dimension sketches and cad drawings.
10. Produce Cad generated working drawings-both detail and assembly.
11. Use auto Cad solid modeling software to produce 3d models and drawings of detailed
parts.
12. Convert solid model parts to drawings, assemblies, and .stl files to model on a rapid
prototyping machine
13. To use the design process to design a product to be prototyped and manufactured on
campus
14. To present final design with an oral and written report

COURSE TOPICS AND CONTENT REQUIREMENTS:

1. Introduction to the graphic language and design.

2.	Introductions to computer aided drafting.
3.	Instrumental drawing, freehand sketching and lettering.
4.	Geometric construction.
5.	Shape description and multiview projection.
6.	Sectional views.
7.	Auxiliary views and descriptive geometry
8.	Dimensioning
9.	Tolerancing
10	. Design and working drawings

INSTRUCTIONAL METHODS:

Lecture Lab Group projects Presentations

INSTRUCTIONAL MATERIALS:

Text

Required Reading: Technical Drawing with Engineering Graphics 14th Edition -

Giesecke

Lab supplies for hand sketching

STUDENT REQUIREMENTS AND METHODS OF EVALUATION:

Completion of assigned problems, required reading of text.
Periodic tests.
Group Projects
Problem Based Learning
Oral presentation
Written report

Grades will be based on the following criteria:

Tests 40%

Lab work assignments 35%

Design project (including working drawings, oral presentation and written report)

OTHER REFERENCES

Course Competency/Assessment Methods Matrix

EGR 1000; Engineering Graphics I		Assessment Option											ent Options																			
For each competency/outcome place an "X" below the method of assessment to be used.	Assessment of Student Learning	Article Review	Case Studies	Group Projects	Lab Work	Oral Presentations	Pre-Post Tests	Quizzes	Written Exams	Artifact Self Reflection of Growth		xam	Questions	Projects				(0)		Applied Application (skills) Test	Oral Exit Interviews	Accreditation Reviews/Reports	Advisory Council Feedback	Employer Surveys	Graduate Surveys	Internship/Practicum /Site Supervisor Evaluation	Licensing Exam	In Class Feedback	Simulation	Interview	Written Report	Assignment
Assessment Measures – Are direct or indirect as indicated. List competencies/outcomes below.	Direct/ Indirect	D	D	О		<u>م</u> ،	Ω	ا ۵	Д	٥	Δ	Ω	Δ	О	Δ		Ω	Δ	Δ	О			_		٥	۵						
1. Use freehand sketching to sketch isometric, oblique and perspective pictorials.				×	×										×			×										×				×
Describe the basic terms, concept and techniques of computer aided drafting.						;	×	×				×			×													×				×
3. Set up Cad drawings, use drawing aids, save drawings, and get help when needed.					×	;	×	×				×			×													×				×
4. Using geometric construction techniques sketch shapes by hand and on Cad.					×	;	×	×				×			×													×				×
5. Using orthographic principles sketch multi view drawings of detailed parts.				×	×	;	X	×				×			×			×										×				×
6. Produce 2d multi view drawings on Cad.				X	X	``	X	X				×			X			X										×				×
7. Produce section views and auxiliary views by freehand sketching and in 2d cad.				×	×	;	×	×				×			×			×										×				×
8. Find true sizes, distances, and angles between points, lines, and planes in three dimensions.				×	×	;	×	×				×			×			×										×				×
9. Dimension sketches and cad drawings.				×	×		×	×				×			×			×										×				×
10. Produce Cad generated working drawings-both detail and assembly.				×	×	;	×	×				×			×			×										×				×

EGR 1000; Engineering Graphics I											As	sse	ess	me	ent	: O	pti	on	S													
For each competency/outcome place an "X" below the method of assessment to be used.	Assessment of Student Learning	Article Review	Case Studies	Group Projects	Lab Work	Oral Presentations	Pre-Post Tests	Quizzes		Artifact Self Reflection of Growth		xam	Questions	Projects				Ø		Applied Application (skills) Test	Oral Exit Interviews	Accreditation Reviews/Reports	Advisory Council Feedback	Employer Surveys	Graduate Surveys	Internship/Practicum /Site Supervisor Evaluation	Licensing Exam	In Class Feedback	Simulation	Interview	Written Report	Assignment
Assessment Measures – Are direct or indirect as indicated. List competencies/outcomes below.	Direct/ Indirect	D	۵	۵	ا ۵	ا ۵	ا م	Δ ,	Δ	۵	Д	Δ	Δ	ا م	ا د	ا ت	، د	ا ۵	О	Δ					D	۵						
11. Use auto Cad solid modeling software to produce 3d models and drawings of detailed parts.				×	×	;	× ;	×				×		;	×		;	×										×				×
12. Convert solid model parts to drawings, assemblies, and .stl files to model on a rapid prototyping machine				×	×	;	× ;	×				×		;	×		;	×										×				×
13. To use the design process to design a product to be prototyped and manufactured on campus					×						×		;	×;	× ;	×	;	×										×				×
14. To present final design with an oral and written report																													×			