6	ILLINOIS VALLEY COMMUNITY COLLEGE
	COURSE OUTLINE
	DIVISION: Workforce Development
	COURSE: CSI 2011; Computer Science II
Date:	02/02/2017

Prerequisite(s): CSI 1011

Delivery Method:

🗌 Seminar

🖂 Lab

Clinical

⊠ Blended

Online

3	Contact Hours (1 contact = 1 credit hour)
0	Contact Hours (1 contact = 1 credit hour)
2	Contact Hours (2-3 contact = 1 credit hour)
0	Contact Hours (3 contact = 1 credit hour)

Offered: 🗌 Fall 🛛 Spring 🗌 Summer

IAI Equivalent - Only for Transfer Courses-go to http://www.itransfer.org: CS 912

CATALOG DESCRIPTION:

This is the second course in a sequence of courses for computer science majors. This course covers the design, coding, and implementation of larger projects involving multiple objects/classes using inheritance, generics and interfaces. Topics include: data structures (stacks, queues, lists, iterators, trees, heaps), recursion, algorithm efficiency, sorts, and some GUI programming. This course is equivalent to IAI CSI 912. Lecture: 3 hours; Lab: 2 hours.

GENERAL EDUCATION GOALS ADDRESSED

[See last page for Course Competency/Assessment Methods Matrix.]

Upon completion of the course, the student will be able: [Choose up to three goals that will be formally assessed in this course.]

- \boxtimes To apply analytical and problem solving skills to personal, social, and professional issues and situations.
- To communicate successfully, both orally and in writing, to a variety of audiences.
- To construct a critical awareness of and appreciate diversity.
- To understand and use technology effectively and to understand its impact on the individual and society.
- To develop interpersonal capacity.
- To recognize what it means to act ethically and responsibly as an individual and as a member of society.
- To recognize what it means to develop and maintain a healthy lifestyle in terms of mind, body, and spirit.
- To connect learning to life.

EXPECTED LEARNING OUTCOMES AND RELATED COMPETENCIES:

[Outcomes related to course specific goals. See last page for more information.]

Upon completion of the course, the student will be able to:

- 1. Analyze and explain the benefits and costs of using data structures (Big Oh notation)
- 2. Understand when to use data structures and which data structure is best in which application/scenario
- 3. Use data structures in coding programs
- 4. Identify situations where using recursion is appropriate and code simple recursive procedures
- 5. Analyze, understand, code, and compare different sorting algorithms

Outcome 1 – Students will be able to analyze and explain the benefits and costs of using data structures (Big Oh notation)

- 1.a Students will be able to discuss the goals of software development with respect to efficiency
- 1.b Students will learn about growth functions and Big-Oh notation.
- 1.c Students will use practical coding examples to simulate Big-Oh algorithms.

Outcome 2 – Students will be able to understand when to use data structures and which data structure is best in which application/scenario

- 2.a Students will learn about stack collections and when it is applicable to use stacks
- 2.b Students will learn about linked lists and when it is applicable to use linked lists
- 2.e Students will learn about queues and when it is applicable to use queues
- 2.f Students will learn about iterators and how they interact with the data structure classes
- 2.j Students will learn about all types of trees and when it is applicable to use trees
- 2.k Students will learn about heaps and when it's applicable to use heaps

Outcome 3 – Students will be able to use data structures in coding programs

- 3.a Students will code using the Java Stack class
- 3.b Students will code using only arrays/ArrayLists
- 3.c Students will code using the Java LinkedList class
- 3.d Students will learn about Queues in the Java API (interfaces)
- 3.e Students will code Iterator and Iterable interfaces when using other data collections
- 3.f Students will code using binary trees
- 3.g Students will create a heap structure from scratch using an array as a data structure

Outcome 4 – Students will be able to identify situations where using recursion is appropriate and code simple recursive procedures

- 4.a Students will learn the underlying concepts of recursion
- 4.b Students will learn when recursion should and should not be used
- 4.c Students will use recursion to solve a problem

Outcome 5 – Students will be able to analyze, understand, code, and compare different sorting algorithms

- 5.a Students will re-visit the linear search and binary search algorithms.
- 5.b Students will examine several different sort algorithms
- 5.c Students will discuss the complexity of different sort algorithms

MAPPING LEARNING OUTCOMES TO GENERAL EDUCATION GOALS

[For each of the goals selected above, indicate which outcomes align with the goal.]

Goals	Outcomes
First Goal	
To apply analytical and problem solving skills to personal, social, and professional issues and situations	Outcome 1-5 - all
Second Goal	
To understand and use technology effectively and to understand its impact on the individual and society	Outcome 1-5 – all

COURSE TOPICS AND CONTENT REQUIREMENTS:

INSTRUCTIONAL METHODS:

- Lecture
- Lab
- Programming Assignments
- Group coding project
- Tests

INSTRUCTIONAL MATERIALS:

Java Software Structures, Designing and Using Data Structures 4e, Lewis and Chase JGrasp and/or Eclipse IDE Java SDK – latest version

Computers for the students to work on in lab time

STUDENT REQUIREMENTS AND METHODS OF EVALUATION:

Students are expected to:

- 1. Read assigned material from book and select Internet sites
- 2. Watch videos when assigned on key topics that show coding techniques
- 3. Code, compile, test, and document programming assignments individually
- 4. Ask questions in class and lab to further his/her understanding of the topic

Grading Scale: A= 90-100 B= 80-89 C= 70-79 D= 60-69 F= 0-59

There will be two exams, midterm and final. Exams are worth 30% of overall weight. There will be 8-10 programming assignments varying in point value. Classroom activities may be used to increase participation and understanding. Classroom activities and programming assignments are worth 70% of the overall weight.

OTHER REFERENCES

- Java Programming: From Problem Analysis To Program Design 5e, D.S. Malik
- Big Java Early Objects 6e, Horstmann

Course Competency/Assessment Methods Matrix

(Dept/# Course Name)		•										Ass	ses	sm	ent	Op	otio	ns														
For each competency/outcome place an "X" below the method of assessment to be used.	Assessment of Student Learning	Article Review	Case Studies	Group Projects	Lab Work	Oral Presentations	Pre-Post Tests	Quizzes	Written Exams	Artifact Self Reflection of Growth	Capstone Projects	Comprehensive Written Exit Exam	Course Embedded Questions	Multi-Media Projects	Observation	Writing Samples	Portfolio Evaluation	Real World Projects	Reflective Journals	Applied Application (skills) Test	Oral Exit Interviews	Accreditation Reviews/Reports	Advisory Council Feedback	Employer Surveys	Graduate Surveys	Internship/Practicum /Site Supervisor Evaluation	Licensing Exam	In Class Feedback	Simulation	Interview	Written Report	Assignment
Assessment Measures – Are direct or indirect as indicated. List competencies/outcomes below.	Direct/ Indirect	Δ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	_	_	_	_	D	D						
benefits and costs of using data structures (Big Oh notation)	Δ							Х	X																			Х				Х
Students will be able to understand when to use data structures and which data structure is best in which application/scenario	۵			X	X			X	X																			Х				X
Students will be able to use data structures in coding programs (Dept/# Course Name)	۵			X	X			X	X			As	ses	sm	ent	Or	otio	ns										Х				X

														1			1												1		· · · · · ·	
For each competency/outcome place an "X" below the method of assessment to be used.	Assessment of Student Learning	Article Review	Case Studies	Group Projects	Lab Work	Oral Presentations	Pre-Post Tests	Quizzes	Written Exams	Artifact Self Reflection of Growth	Capstone Projects	Comprehensive Written Exit Exam	Course Embedded Questions	Multi-Media Projects	Observation	Writing Samples	Portfolio Evaluation	Real World Projects	Reflective Journals	Applied Application (skills) Test	Oral Exit Interviews	Accreditation Reviews/Reports	Advisory Council Feedback	Employer Surveys	Graduate Surveys	Internship/Practicum /Site Supervisor Evaluation	Licensing Exam	In Class Feedback	Simulation	Interview	Written Report	Assignment
Assessment Measures – Are direct or indirect as indicated. List competencies/outcomes below.	Direct/ Indirect		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D		_	_		D	D						
Students will be able to identify situations where using recursion is appropriate and code simple	0							X	×																			×				×
Students will be able to analyze, understand, code, and compare different	-				×			X (×																			×				
Solung algorithms																												- 1				